CHEMISCHE BERICHTE

FORTSETZUNG DER BERICHTE DER DEUTSCHEN CHEMISCHEN GESELLSCHAFT

HERAUSGEGEBEN VON DER GESELLSCHAFT DEUTSCHER CHEMIKER

119. JAHRGANG · HEFT 3 · SEITE 771 - 1110

Dieses Heft wurde am 4. März 1986 ausgegeben.

Zur Tautomerie kovalenter Cyanide – Reaktionen der Isonitrilform mit Hexafluoraceton

Volkmar W. Pogatzki und Herbert W. Roesky*

Institut für Anorganische Chemie der Universität Göttingen, Tammannstr. 4, D-3400 Göttingen

Eingegangen am 12. Juli 1985

Aus Me₃SiCN und Hexafluoraceton (HFA) werden die Verbindungen Me₃SiOC(CF₃)₂CN (1) sowie, je nach Reaktionsbedingungen, die 1,3-Dioxolane Me₃SiNC(HFA)₂ (2) oder Me₃SiOC(CF₃)₂NC(HFA)₂ (3) erhalten. Das Dioxolan 2 ergibt mit ClF die Dioxolane 4, 5, mit SeOCl₂ das Bis(dioxolanylidenamino)selendichlorid Cl₂Se[NC(HFA)₂]₂ (6), mit BBr₃ die (Dioxolanylidenamino)borane Br_{3-n}B[NC(HFA)₂]_n (7, 8) und mit Ph₂PCl den Bicyclus 9.

Tautomerism of Covalent Cyanides - Reactions of the Isonitrile Form with Hexafluoroacetone

From Me₃SiCN and hexafluoroacetone (HFA) the compound Me₃SiOC(CF₃)₂CN (1) as well as, depending on the reaction conditions, the 1,3-dioxolanes Me₃SiNC(HFA)₂ (2) or Me₃SiOC(CF₃)₂NC(HFA)₂ (3) are obtained. Dioxolane 2 reacts with ClF to form the dioxolanes 4, 5, with SeOCl₂ to give the bis(dioxolanylideneamino)selenium dichloride Cl₂Se-[NC(HFA)₂]₂ (6), with BBr₃ to yield the (dioxolanylideneamino)boranes Br_{3-n}B-[NC(HFA)₂]_n (7, 8), and with Ph₂PCl to form the bicyclus 9.

Kovalente Elementcyanide wie HCN und Me₃SiCN stehen mit ihren tautomeren Isonitrilformen im Gleichgewicht, wobei die Nitrilformen stark begünstigt sind^{1,2)}. Eine Trennung der Isomeren gelang bisher nicht.

 $X-C=NI \longrightarrow X-N=\overline{C}I$ X = H, Me_3Si

Chem. Ber. 119, 771 – 776 (1986)

© VCH Verlagsgesellschaft mbH, D-6940 Weinheim, 1986 0009 – 2940/86/0303 – 0771 \$ 02.50/0

Reaktionen

Von den Isonitrilformen sind bislang nur wenige Reaktionsprodukte bekannt³). Mit Hexafluoraceton (HFA) gelang es uns, beide Tautomere Me₃SiCN/Me₃SiNC zur Reaktion zu bringen und ihre Reaktionsprodukte zu trennen. Das Nitril A reagiert unter Einschub zum silylierten Cyanhydrin 1⁴). Das Isonitril B führt unter neutralen Bedingungen zu einem bereits aus organischen Isonitrilen erhaltenen substituierten Dioxolanylidenamin-System 2⁵), welches sich auch bei der basenkatalysierten Reaktion von Cyaniden des dreiwertigen Phosphors mit HFA bildet⁶).

Sowohl unter basischer (geringe Spuren Et₃N) wie auch saurer Katalyse (Reaktion im Stahlzylinder) bildet sich anstelle von 2 das 1:3-Produkt 3, in dem noch ein weiteres Molekül HFA in die N-Si-Bindung eingeschoben ist.

Das hierin enthaltene Strukturelement war ebenfalls in den Produkten aus HFA und Phosphorcyaniden in Gegenwart von Et₃N beobachtet worden^{6,7)}. Die Produktverteilung von 2 und 1 bzw. von 3 und 1 korreliert mit dem Verhältnis der eingesetzten Mengen der Ausgangsverbindungen Me₃SiCN und HFA. Ein großer Überschuß an HFA begünstigt die Bildung von 2 bzw. 3 gegenüber 1. Die Reaktionswege (2) und (3) werden durch den experimentellen Befund gestützt, daß 1 und 2 unter neutralen Bedingungen nicht mit weiterem Hexafluoraceton reagieren.

Aus den durchgeführten Experimenten können zwei Folgerungen gezogen werden: 1. Sowohl bei katalysierten als bei nicht katalysierten Reaktionen reagiert bevorzugt die Isonitrilform mit HFA, wenn dieses im Überschuß vorhanden ist. 2. Die Einstellung des Nitril-Isonitril-Gleichgewichtes $A \rightleftharpoons B$ erfolgt schneller als die Reaktion der Nitrilform mit HFA.

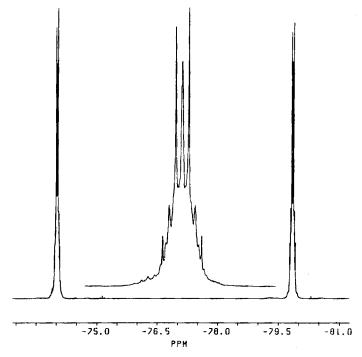


Abb. 1. 235.359-MHz-19F-NMR-Spektrum von 2

Das bemerkenswert stabile 2 reagiert nur mit extrem reaktiven Verbindungen. So führt die Behandlung mit Chlor nicht zur Spaltung der N-Si-Bindung, und erst mit ClF wird das (Chlorimino)dioxolan 4 erhalten, das mit weiterem ClF zu 5 führt.

Bei der Reaktion von 2 mit SeOCl₂ wird (Me₃Si)₂O abgespalten und das kristalline Selenderivat 6 gebildet. Mit BBr₃ konnten aus 2 Br₂B[NC(HFA)₂] (7) und B[NC(HFA)₂]₃ (8) synthetisiert werden. Die Reaktion von Ph₂PCl mit 2 führt

Chem. Ber. 119 (1986)

unter Umlagerung zum bicyclischen 9. Eine ähnliche Umlagerung war bei der Reaktion von Ph₂PCl mit 10 beobachtet worden⁷.

Kernresonanz-Untersuchungen

Im ¹⁹F-NMR-Spektrum von 2, 3, 4 und 6 erscheint das Strukturelement – NC(HFA)₂ als A₃A'₃X₃-Spinsystem. Die Signalform der Multipletts ähnelt in erster Näherung einem deformierten Septett. Abb. 1 zeigt als Beispiel das ¹⁹F-NMR-Spektrum von 2. Die Abstände zwischen den intensivsten sieben Linien betragen ca. 5.5 Hz.

Eine Kopplung dieser F-Atome mit der verbrückenden Hexasluorisopropylidengruppe in 3 wird nicht beobachtet. Im ${}^{1}H$ -NMR-Spektrum von 3 koppeln dagegen die Me₃Si-Protonen hiermit zum Septett mit ${}^{6}J(H-F)=0.5$ Hz. Im ${}^{19}F$ -NMR-Spektrum von 7 wird wegen des Kernquadrupolmoments von ${}^{11}B$ keine Feinstruktur mehr beobachtet. Zudem ist das Signal bei -72.9 ppm, das den an C-5 gebundenen CF₃-Gruppen zuzuordnen ist, slacher und breiter als das bei -79.1 ppm, was auf eine Fernkopplung des Tiesseldsignals mit Bor schließen läßt. In 9 koppeln die unterschiedlichen CF₃-Gruppen nicht untereinander. Die ${}^{19}F$ -NMR-Signale sind jedoch beide durch ${}^{31}P$ zum Dublett mit ${}^{4}J(P-F)=4.1$ bzw. 2.3 Hz ausgespalten, im Gegensatz zum strukturähnlichen 11, worin nur eine Hexasluorisopropylidengruppe mit ${}^{31}P$ koppelt 7 .

Wir danken dem Fonds der Chemischen Industrie, der Deutschen Forschungsgemeinschaft und dem Land Niedersachsen für die Förderung dieser Arbeit.

Experimenteller Teil

Alle Experimente werden unter Feuchtigkeitsausschluß durchgeführt. — ¹H-, ¹⁹F-NMR-Spektren: Bruker WP 80 SY (80.13, 75.39 MHz), TMS und CFCl₃ als interner Standard. — ³¹P-, ¹¹B-, ¹³C-, ²⁹Si-NMR-Spektren: Bruker AM 250 (101.256, 80.253, 62.896, 49.694 MHz), TMS als interner, 85proz. H₃PO₄ und BF₃ · OEt₂ als externer Standard. — IR-Spektren: Perkin Elmer Spektrograph 735 B. — Massenspektren: Varian MAT CH 5 (70 eV). — Elementaranalysen: Mikroanalytisches Laboratorium Beller, Göttingen.

2,2,5,5-Tetrakis(trifluormethyl)-N-(trimethylsilyl)-1,3-dioxolan-4-imin (2): In einen Druck-kolben gibt man 20 g (0.20 mol) Me₃SiCN. Nach Abkühlen auf $-196\,^{\circ}$ C wird der Kolben evakuiert, und 134 g (0.81 mol) Hexafluoraceton (HFA) werden dazukondensiert. Man rührt 16 h bei Raumtemp., entfernt anschließend überschüssiges HFA durch Abkondensieren und erhält 77 g Rohprodukt als farblose Flüssigkeit. Destillation bei 9.2 kPa ergibt 10.4 g (39 mmol) 1, Sdp. 36–40 $^{\circ}$ C, und 50.5 g (117 mmol) 2, Sdp. 68–70 $^{\circ}$ C. – IR: 2970 s, 2900 ss, 1850 m, 1807 st, 1300 sst, 1240 sst, 1185 st, 1165 sst, 1145 sst, 1090 sst, 987 sst, 918 m, 850 st, 825 m, 755 m, 745 m, 728 st, 715 st, 702 s, 640 m, 620 s, 540 s, 530 cm $^{-1}$ s. – 1 H-NMR (CDCl₃): δ = 0.28. – 19 F-NMR (CDCl₃): δ = -74.04 (m); -79.87 (m). – 13 C-NMR (CDCl₃): δ = 136.97 (s); 119.61 (q), 1 J(C-F) = 288.3 Hz; 119.16 (q), 1 J(C-F) = 288.9 Hz; 98.78 (sept), 2 J(C-F) = 36.4 Hz; 77.78 (sept), 2 J(C-F) = 34.4 Hz; -0.64, 1 J(C-Si) = 57.9 Hz. – 29 Si-NMR (CDCl₃): δ = 8.86, 1 J(C-Si) = 57.9 Hz.

Bei einem Molverhältnis Me₃SiCN:HFA wie 1:2 fallen 1 und 2 in gleichen molaren Mengen an.

N-[2,2,2-Trifluor-1-(trifluormethyl)-1-(trimethylsilyloxy)ethyl]-2,2,5,5-tetrakis(trifluormethyl)-1,3-dioxolan-4-imin (3): Reaktionsführung wie bei 2; zusätzlich werden zuerst 0.1 g Et₃N in das Reaktionsgefäß kondensiert. Das Reaktionsgemisch aus 5.0 g (50 mmol) Me₃SiCN und 25 g (150 mmol) HFA färbt sich bei Raumtemp. braun. Das Rohprodukt (21.2 g) gibt nach Destillation bei 9.2 kPa 5.3 g (20 mmol) 1, Sdp. 36−39 °C, und 11.6 g (20 mmol) 3, Sdp. 82−84 °C. Aus 1.0 g (10 mmol) Me₃SiCN und 25 g (150 mmol) HFA erhält man nach Destillation 0.50 g (2.0 mmol) 1 und 3.5 g (6.0 mmol) 3, das bei Raumtemp. ein Feststoff ist. − IR: 2988 ss, 2357 m, 2337 s, 1778 st, 1350 s, 1330 st, 1305 sst, 1220 bis 1280 sst, 1190 st, 1163 st, 1145 sst, 1113 st, 1103 sst, 1088 st, 980 sst, 895 m, 880 s, 843 st, 820 s, 750 m, 718 st, 635 s, 530 ss, 480 ss, 430 cm⁻¹ ss. − ¹H-NMR (CDCl₃): δ = 0.23 (sept), ${}^6J(H-F)$ = 0.5, ${}^2J(H-Si)$ = 3.5 Hz. − ${}^{19}F$ -NMR (CDCl₃): δ = −73.58 (m); −78.74 (s); −79.21 (m). − ${}^{13}C$ -NMR (CDCl₃): δ = 145.09 (s); 120.78 (q), ${}^1J(C-F)$ = 290.3 Hz; 119.24 (q), ${}^1J(C-F)$ = 289.1 Hz; 118.57 (q), ${}^1J(C-F)$ = 289.1 Hz; 103.19 (sept), ${}^2J(C-F)$ = 37.1 Hz; 87.11 (sept), ${}^2J(C-F)$ = 33.2 Hz; 82.73 (sept), ${}^2J(C-F)$ = 34.4 Hz; 0.53 (s). − ${}^{29}Si$ -NMR (CDCl₃): δ = 24.92.

N-Chlor-2,2,5,5-tetrakis (trifluormethyl)-1,3-dioxolan-4-imin (4): Zu 4.75 g (11 mmol) 2 in einem Druckkolben kondensiert man bei $-196\,^{\circ}$ C 0.60 g (11 mmol) ClF. Man erwärmt auf Raumtemp. und rührt noch 2 h. Destillation bei 9.2 kPa ergibt 3.5 g (80%) 4, Sdp. 55 °C. – IR: 1796 st, 1760 s, 1310 sst, 1250 sst, 1200 m, 1160 st, 1150 sst, 1118 st, 1050 s, 1040 s, 980 sst, 850 s, 765 s, 750 m, 735 st, 725 cm⁻¹ st. – FI – MS: m/z = 393, M⁺. – ¹⁹F-NMR (CDCl₃): $\delta = -73.7$ (m); -79.0 (m).

C₇ClF₁₂NO₂ (393.7) Ber. C 21.37 Cl 9.01 Gef. C 20.9 Cl 9.2

N,N-Dichlor-4-fluor-2,2,5,5-tetrakis(trifluormethyl)-1,3-dioxolan-4-amin (5): Zu 3.80 g (9.0 mmol) 2 kondensiert man bei -196°C 0.97 g (18 mmol) ClF. Man erwärmt auf Raumtemp. und rührt noch 2 h. Destillation bei 9.2 kPa ergibt 3.6 g (90%) 5, Sdp. 59 °C. – IR: 1270 sst, 1220 sst, 1190 st, 1150 sst, 1120 sst, 1080 st, 985 st, 960 st, 790 s, 740 st, 720 st, 690 cm⁻¹ s. – FI-MS: m/z = 363 (M – NCl₂). – ¹⁹F-NMR (CDCl₃): δ = -69.5 (3 F, m); -70.4 (3 F, m); -78.8 (6 F, m); -89.4 (1 F, m). – ¹³C-NMR (CDCl₃): δ = 123.85 (d), ${}^{1}J(C-F) = 300.6$ Hz; 119.76 (q), J(C-F) = 288.1 Hz; 118.52 (q), J(C-F) = 291.2 Hz; 103.28 (d von sept), ${}^{2}J(C-F) = 37.3$, ${}^{3}J(C-F) = 1.1$ Hz; 89.15 (d von sept), ${}^{2}J(C-F) = 33.7$, ${}^{2}J(C-F) = 31.2$ Hz.

N,N'-(Dichlorselenanyliden) bis/2,2,5,5-tetrakis(trifluormethyl)-1,3-dioxolan-4-imin] (6): Zu 1.04 g (6.3 mmol) SeOCl₂ und 5.69 g (13.2 mmol) 2 gibt man 5 ml CH₂Cl₂ und rührt 5 h unter Rückfluß. Der Kolben wird anschließend verschlossen und zur Kristallisation stehengelassen. Durch Abkühlen auf $-40\,^{\circ}$ C und Filtrieren erhält man 3.7 g (69%) 6 als farblose luftempfindliche Kristalle, Schmp. $100-102\,^{\circ}$ C. — MS: m/z=831 (M — Cl, 17%), 796 (M — 2 Cl, 52), 438 (SeNC(HFA)₂, 100). — 19 F-NMR (CDCl₃): $\delta=-72.45$ (m); -78.55 (m). — 13 C-NMR (CDCl₃): $\delta=151.79$ (s); 118.99 (q), 1 J(C-F) = 290.0 Hz; 120.24 (q), 1 J(C-F) = 289.6 Hz; 104.16 (sept), 2 J(C-F) = 38.0 Hz; 83.78 (sept), 2 J(C-F) = 35.3 Hz.

N-(Dibromboryl)-2,2,5,5-tetrakis(trifluormethyl)-1,3-dioxolan-4-imin (7): Man löst 3.66 g (14.6 mmol) BBr₃ in 25 ml CH₂Cl₂ und läßt unter Rühren 6.00 g (13.9 mmol) 2 langsam zutropfen. Nach Abkühlen auf -40 °C werden 6.6 g (90%) 7 als weißes Pulver abfiltriert. Das Rohprodukt wird aus 20 ml heißem CH₂Cl₂ umkristallisiert; Schmp. 93-97 °C. — MS: m/z = 529 (M⁺, 1.7%), 460 (M — CF₃, 3.6), 448 (M — Br, 5.2), 297 (65), 97 (CF₃CO, 54), 69 (CF₃, 100). — ¹⁹F-NMR (CDCl₃): $\delta = -72.9$, -79.1 (breit). — ¹³C-NMR (CDCl₃): $\delta = -72.9$, -79.1 (breit). — ¹³C-NMR (CDCl₃): $\delta = -72.9$, -79.1 (breit). — ¹³C-NMR (CDCl₃): $\delta = -72.9$, -79.1 (breit). — ¹³C-NMR (CDCl₃): $\delta = -72.9$, -79.1 (breit). — ¹³C-NMR (CDCl₃): $\delta = -72.9$, -79.1 (breit). — ¹⁴C-NMR (CDCl₃): $\delta = -72.9$, -79.1 (breit). — ¹⁵C-NMR (CDCl₃): $\delta = -72.9$, -79.1 (breit).

C₁₄Cl₂F₂₄N₂O₄Se (865.9) Ber. C 19.42 Gef. C 19.4

137.9 (breit); 119.04 (q), ${}^{1}J(C-F) = 290.0$ Hz; 118.38 (q), ${}^{1}J(C-F) = 289.6$ Hz; 101.1 (breit); 80.1 (breit). $-{}^{11}B-NMR$ (CDCl₃): $\delta = 26.6$.

C₇BBr₂F₁₂NO₂ (528.7) Ber. C 15.90 Gef. C 16.4

N,N',N"-Borylidintris[2,2,5,5-tetrakis(trifluormethyl)-1,3-dioxolan-4-imin] (8): Zu 1.50 g (6.0 mmol) BBr₃ in 10 ml CH₂Cl₂ werden langsam 8.40 g (19.5 mmol) 2, gelöst in 10 ml CH₂Cl₂, getropft. Man rührt noch 2 h unter Rückfluß, filtriert das Rohprodukt (5.6 g, 86%) bei Raumtemp, ab und kristallisiert aus 100 ml heißem CCl₄ um, Schmp, 66°C, — MS; $m/z = 1085 \, (M^+, 5.8\%), \, 1066 \, (M^-, F, 3), \, 1016 \, (M^-, CF_3, 1.4), \, 727 \, (M^-, NC(HFA)_2, 1000 \, M^-)$ 0.8), 297 (99), 290 (100), 97 (CF₃CO, 100), 69 (CF₃, 100). - Für NMR-Messungen ist die Löslichkeit von 8 nicht ausreichend.

3,3,6,6-Tetrakis(trifluormethyl)-1,1-diphenyl-2,7-dioxa-4-aza-1\(\lambda^5\)-phosphabicyclo[3.2.0]hept-4-en (9): Man gibt 2.00 g (9.1 mmol) Ph₂PC! und 4.30 g (10.0 mmol) 2 zusammen und rührt im verschlossenen Kolben 10 h bei 80°C. Das als Nebenprodukt entstandene Me₃SiCl wird bei 1.3 Pa bei Raumtemp. abgezogen. Der Rückstand wird aus 5 ml Acetonitril in der Wärme umkristallisiert. Man erhält (zuletzt bei -20° C) 2.91 g (5.3 mmol) 9 als farblose Kristalle, Schmp. 113°C. – MS: m/z = 543 (M⁺, 3%), 524 (M – F, 2), 474 (M – CF₃, 25), 377 (M - HFA, 1), 201 (Ph₂PO, 100). - ¹⁹F-NMR (CDCl₃): $\delta = -73.0$ (d), ${}^{4}J(P-F) = 4.1 \text{ Hz}; -76.8 \text{ (d)}, {}^{4}J(P-F) = 2.3 \text{ Hz}. - {}^{13}\text{C-NMR (CDCl}_{3}); \delta = 186.7 \text{ (d)}.$ $^{1}J(C-P) = 111.0 \text{ Hz}$; 133.9 (d), J(C-P) = 12.8 Hz; 133.3 (d), J(C-P) = 3.8 Hz; 129.5 (d), ${}^{1}J(C-P) = 137.0 \text{ Hz}$; 129.4 (d), J(C-P) = 15.5 Hz; 121.0 (d von g), ${}^{1}J(C-F) =$ 287.5, ${}^{3}J(C-P) = 8.6$ Hz; 120.3 (q), ${}^{1}J(C-F) = 288.0$ Hz; 101.8 (okt), ${}^{2}J(C-F) = 32.1$, $^{2}J(C-P) = 32.1 \text{ Hz}$; 80.6 (d von sept), $^{2}J(C-F) = 33.6$, $^{2}J(C-P) = 16.6 \text{ Hz.} -$ ³¹P-NMR (CDCl₃): $\delta = 1.3$ (m).

C₁₉H₁₀F₁₂NO₂P (543.25) Ber. C 42.00 H 1.86 Gef. C 43.4 H 1.9

[165/85]

E. Churchwell, A. G. Nash und C. M. Walmsley, Astrophys. J. 287, 681 (1984).
 ^{2) 2a)} M.R. Booth und S. G. Frankiss, Spectrochim. Acta, Part A 26, 859 (1970). – ^{2b)} J. A. Seckar und J. S. Thayer, Inorg. Chem. 15, 501 (1976). – ^{2c)} D. E. J. Arnold, S. Cradock, E. A. V. Ebsworth, J. D. Murdoch, D. W. H. Rankin, D. C. J. Skea, R. K. Harris und B. J. Kimber, J. Chem. Soc., Dalton Trans. 1981, 1349.

^{3) 3a)} J. J. Mc Bride jr. und H. C. Beachell, J. Am. Chem. Soc. 74, 5247 (1952). - ^{3b)} I. Ojima, S.-I. Inabi und Y. Nagai, J. Chem. Soc., Chem. Commun. 1974, 826. - $^{3c)}$ W. Lutz und W. Sundermeyer, Chem. Ber. 112, 2158 (1979). - $^{3d)}$ W. Y. Lam und D. D. Des Marteau, J. Am. Chem. Soc. 104, 4034 (1982).

4) W. Lidy und W. Sundermeyer, Chem. Ber. 106, 587 (1973).

⁵⁾ W. J. Middleton, D. C. England und C. G. Krespan, J. Org. Chem. 32, 948 (1967). H. W. Roesky, J. Lucas, K.-L. Weber, H. Djarrah, E. Egert, M. Noltemeyer und G. M. Sheldrick, Chem. Ber. 118, 2396 (1985).
 H. W. Roesky und V. W. Pogatzki, Chem. Ber., in Vorbereitung.